
Chapter 10

Linear Structures

Concepts:
. Stacks
. Queues

“Rule Forty-two.
All persons more than a mile high to leave the court.”. . .

“Well, I shan’t go,” said Alice; “Besides
that’s not a regular rule: you just invented it now.”

“It’s the oldest rule in the book,” said the King.
“Then it ought to be Number One,” said Alice.

—Charles Lutwidge Dodgson

THE STATE OF SOME STRUCTURES REFLECTS THEIR HISTORY. Many systems—for
example, a line at a ticket booth or, as Alice presumes, the King’s book of rules—
modify their state using two pivotal operations: add and remove. As with most
data structures, when values are added and removed the structure grows and
shrinks. Linear structures, however, shrink in a predetermined manner: values
are removed in an order based only on the order they were added. All linear
structures abide by a very simple interface:

Linear

public interface Linear<E> extends Structure<E>

{

public void add(E value);

// pre: value is non-null

// post: the value is added to the collection,

// the consistent replacement policy is not specified

public E get();

// pre: structure is not empty

// post: returns reference to next object to be removed

public E remove();

// pre: structure is not empty

// post: removes an object from store

public int size();

// post: returns the number of elements in the structure

public boolean empty();

// post: returns true if and only if the linear structure is empty

}

For each structure the add and remove methods are used to insert new values
into the linear structure and remove those values later. A few utility routines are

220 Linear Structures

also provided: get retrieves a copy of the value that would be removed next,
while size returns the size of the structure and empty returns whether or not
the linear structure is empty.

One thing that is important to note is that the empty method seems to pro-
vide the same features as the isEmpty method we have seen in previous struc-
tures. This is a common feature of ongoing data structure design—as structures
evolve, aliases for methods arise. In this case, many native classes of Java ac-
tually have an empty method. We provide that for compatibility; we implement
it in our abstract implementation of the Linear interface. The empty method
simply calls the isEmpty method required by the Structure interface and ulti-
mately coded by the particular Linear implementation.

Abstract-

Linear

abstract public class AbstractLinear<E> extends AbstractStructure<E>

implements Linear<E>

{

public boolean empty()

// post: return true iff the linear structure is empty

{

return isEmpty();

}

public E remove(E o)

// pre: value is non-null

// post: value is removed from linear structure, if it was there

{

Assert.fail("Method not implemented.");

// never reaches this statement:

return null;

}

}

Since our Linear interface extends our notion of Structure, so we will also
be required to implement the methods of that interface. In particular, the
remove(Object) method is required. We use the AbstractLinear implemen-
tation to provide a default version of the remove method that indicates it is not
yet implemented. The benefits of making Linear classes instances of Structure
outweigh the perfect fit of the Structure interface.

Since AbstractLinear extends AbstractStructure, any features of the
AbstractStructure implementation are enjoyed by the AbstractLinear in-
terface as well.

We are now ready to implement several implementations of the Linear in-
terface. The two that we will look at carefully in this chapter, stacks and queues,
are the most common—and most widely useful—examples of linear data struc-
tures we will encounter.

10.1 Stacks 221

10.1 Stacks

Our first linear structure is a stack. A stack is a collection of items that exhibit
the behavior that the last item in is the first item out. It is a LIFO (“lie-foe”)
structure. The add method pushes an item onto the stack, while remove pops
off the item that was pushed on most recently. We will provide the traditionally
named methods push and pop as alternatives for add and remove, respectively.
We will use these stack-specific terms when we wish to emphasize the LIFO
quality. A nondestructive operation, get, returns the top element of the Stack—
the element that would be returned next. Since it is meaningless to remove or
get a Stack that is empty, it is important to have access to the size methods
(empty and size). Here is the interface that defines what it means to be a
Stack:

Stack

public interface Stack<E> extends Linear<E>

{

public void add(E item);

// post: item is added to stack

// will be popped next if no intervening add

public void push(E item);

// post: item is added to stack

// will be popped next if no intervening push

public E remove();

// pre: stack is not empty

// post: most recently added item is removed and returned

public E pop();

// pre: stack is not empty

// post: most recently pushed item is removed and returned

public E get();

// pre: stack is not empty

// post: top value (next to be popped) is returned

public E getFirst();

// pre: stack is not empty

// post: top value (next to be popped) is returned

public E peek();

// pre: stack is not empty

// post: top value (next to be popped) is returned

public boolean empty();

// post: returns true if and only if the stack is empty

public int size();

// post: returns the number of elements in the stack

222 Linear Structures

}

To maintain applications that are consistent with Java’s java.util.Stack the
alternative operations of push and pop may be preferred in some of our discus-
sions.

10.1.1 Example: Simulating Recursion

Earlier we mentioned that tail recursive methods could be transformed to use
loops. More complex recursive methods—especially those that perform mul-
tiple recursive calls—can be more complex to implement. In this section, we
focus on the implementation of an iterative version of the quicksort sorting al-
gorithm. Before we turn to the implementation, we will investigate the calling
mechanisms of languages like Java.

Data available to well-designed methods come mainly from two locations:
the method’s parameters and its local variables. These values help to define
the method’s current state. In addition to the explicit values, implicit parame-
ters also play a role. Let us consider the recursive version of quicksort we saw
earlier:

QuickSort

private static void quickSortRecursive(int data[],int left,int right)

// pre: left <= right

// post: data[left..right] in ascending order

{

int pivot; // the final location of the leftmost value

if (left >= right) return;

pivot = partition(data,left,right); /* 1 - place pivot */

quickSortRecursive(data,left,pivot-1); /* 2 - sort small */

quickSortRecursive(data,pivot+1,right);/* 3 - sort large */

/* done! */

}

The flow of control in most methods is from top to bottom. If the machine stops

QuickSort

execution, it is found to be executing one of the statements. In our recursive
quicksort, there are three main points of execution: (1) before the first recursive
call, (2) before the second recursive call, and (3) just before the return. To focus
on what needs to be accomplished, the computer keeps a special reference to
the code, called a program counter. For the purposes of our exercise, we will
assume the program counter takes on the value 1, 2, or 3, depending on its
location within the routine.

These values—the parameters, the local variables, and the program coun-
ter—reside in a structure called a call frame. Whenever a method is called,
a new call frame is constructed and filled out with appropriate values. Be-
cause many methods may be active at the same time (methods can call each
other), there are usually several active call frames. These frames are main-
tained in a call stack. Since the first method to return is the last method called,
a stack seems appropriate. Figure 10.1 describes the relationship between the
call frames of the call stack and a partial run of quicksort.

10.1 Stacks 223

40 58 4342651 32 04 3 −1 0

0

3

0

11 1

5 1

5

5 1 2

1

2

low hig
h

piv
ot

1 3 58 42 440 2 43 365 0 −1

−1 0

−1

1 32 3 −10 4

1 33 2

32 3

1 33 2

0 1 2 3 4 5 6 7 8 9 10 11

6

7

PC

−1 0 1 4 40

6

2 2

5

Quicksort progress
Call stack base

Call frame 0

Call frame 1

Call frame 2

Call frame 3

Call frame 4

Call stack top

Figure 10.1 A partially complete quicksort and its call stack. The quicksort routine
is currently partitioning the three-element subarray containing 2, 3, and 3. The curve
indicates the progress of recursion in quicksort to this point.

224 Linear Structures

Our approach is to construct a stack of frames that describes the progress of
the various “virtually recursive” calls to quicksort. Each frame must maintain
enough information to simulate the actual call frame of the recursive routine:

class callFrame

{

int pivot;// location of pivot

int low; // left index

int high; // right index

int PC; // next statement (see numbering in recursive code)

public callFrame(int l, int h)

// post: generate new call frame with low and high as passed

{

low = l; high = h; PC = 1;

}

}

Just as with real call frames, it’s possible for variables to be uninitialized (e.g.,
pivot)! We can consider an iterative version of quicksort:

public static void quickSortIterative(int data[], int n)

// pre: n <= data.length

// post: data[0..n-1] in ascending order

{

Stack<callFrame> callStack = new StackList<callFrame>();

callStack.push(new callFrame(0,n-1));

while (!callStack.isEmpty())

{ // some "virtual" method outstanding

callFrame curr = callStack.get();

if (curr.PC == 1) { // partition and sort lower

// return if trivial

if (curr.low >= curr.high) { callStack.pop(); continue; }

// place the pivot at the correct location

curr.pivot = partition(data,curr.low,curr.high);

curr.PC++;

// sort the smaller values...

callStack.push(new callFrame(curr.low,curr.pivot-1));

} else if (curr.PC == 2) { // sort upper

curr.PC++;

// sort the larger values....

callStack.push(new callFrame(curr.pivot+1,curr.high));

} else { callStack.pop(); continue; } // return

}

}

We begin by creating a new stack initialized with a callFrame that simulates
first call to the recursive routine. The low and high variables of the frame are
initialized to 0 and n− 1 respectively, and we are about to execute statement 1.
As long as there is a call frame on the stack, some invocation of quicksort is

10.1 Stacks 225

still executing. Looking at the top frame, we conditionally execute the code
associated with each statement number. For example, statement 1 returns (by
popping off the top call frame) if low and high suggest a trivial sort. Each vari-
able is prefixed by curr because the local variables reside within the call frame,
curr. When we would execute a recursive call, we instead increment the “pro-
gram counter” and push a new frame on the stack with appropriate initialization
of local variables. Because each local variable appears in several places on the
call stack, recursive procedures appear to have fewer local variables. The con-
version of recursion to iteration, then, requires more explicit handling of local
storage during execution.

The sort continues until all the call frames are popped off. This happens
when each method reaches statement 3, that is, when the recursive quicksort
would have returned.

We now discuss two implementations of Stacks: one based on a Vector and
one based on a List.

10.1.2 Vector-Based Stacks

Let us consider a traditional stack-based analogy: the storage of trays in a fast-
food restaurant. At the beginning of a meal, you are given a tray from a stack.
The process of removing a tray is the popping of a tray off the stack. When trays
are returned, they are pushed back on the stack.

Now, assume that the side of the tray holder is marked in a rulerlike fashion,
perhaps to measure the number of trays stacked. Squinting one’s eyes, this looks
like a sideways vector:

Tray Stacker 10
0

9

Following our analogy, the implementation of a Stack using a Vector can be
accomplished by aligning the “top” of the Stack with the “end” of the Vector

(see Figure 10.2). We provide two constructors, including one that provides the
Vector with the initial capacity:

StackVector

protected Vector<E> data;

public StackVector()

// post: an empty stack is created

{

data = new Vector<E>();

}

226 Linear Structures

−1n

1 2 3 4 5

0 1 2 3 4

data.size() == n

data

Top of stack
First free element

n

Figure 10.2 A Vector-based stack containing n elements. The top of the stack is
implied by the length of the underlying vector. The arrow demonstrates the direction of
growth.

public StackVector(int size)

// post: an empty stack with initial capacity of size is created

{

data = new Vector<E>(size);

}

To add elements on the Stack, we simply use the add method of the Vector.
When an element is to be removed from the Stack, we carefully remove the last
element, returning its value.

public void add(E item)

// post: item is added to stack

// will be popped next if no intervening add

{

data.add(item);

}

public E remove()

// pre: stack is not empty

// post: most recently added item is removed and returned

{

return data.remove(size()-1);

}

The add method appends the element to the end of the Vector, extending it if
necessary. Notice that if the vector has n elements, this element is written to slot
n, increasing the number of elements to n + 1. Removing an element reverses
this process: it removes and returns the last element. (Note the invocation of
our principle of symmetry, here. We will depend on this notion in our design
of a number of add and remove method pairs.) The get method is like remove,

10.1 Stacks 227

except that the stack is not modified. The size of the stack is easily determined
by requesting the same information from the underlying Vector. Of course
when the Vector is empty, so is the Stack it supports.1

public boolean isEmpty()

// post: returns true if and only if the stack is empty

{

return size() == 0;

}

public int size()

// post: returns the number of elements in stack

{

return data.size();

}

public void clear()

// post: removes all elements from stack

{

data.clear();

}

The clear method is required because the Stack indirectly extends the Struc-

ture interface.

10.1.3 List-Based Stacks

Only the top “end” of the stack ever gets modified. It is reasonable, then, to seek
an efficient implementation of a Stack using a SinglyLinkedList. Because our
SinglyLinkedList manipulates its head more efficiently than its tail, we align
the Stack top with the head of the SinglyLinkedList (see Figure 10.3).

The add method simply performs an addFirst, and the remove operation
performs removeFirst. Since we have implemented the list’s remove operation
so that it returns the value removed, the value can be passed along through the
stack’s remove method.

StackList

public void add(E value)

// post: adds an element to stack;

// will be next element popped if no intervening push

{

data.addFirst(value);

}

public E remove()

// pre: stack is not empty

1 Again, the class java.util.Stack has an empty method that is analogous to our isEmpty

method. We prefer to use isEmpty for consistency.

228 Linear Structures

head
5

4

3

2

1

Figure 10.3 A stack implemented using a singly-linked list. The arrow demonstrates
the direction of stack growth.

// post: removes and returns the top element from stack

{

return data.removeFirst();

}

The remaining methods are simply the obvious wrappers for similar methods
from the SinglyLinkedList. Because the stack operations are trivial represen-
tations of the linked-list operations, their complexities are all the same as the
corresponding operations found in linked lists—each takes constant time.

It should be noted that any structure implementing the List interface would
be sufficient for implementing a Stack. The distinction, however, between the
various lists we have seen presented here has focused on providing quick access
to the tail of the list. Since stacks do not require access to the tail, the alternative
implementations of list structure do not provide any benefit. Thus we use the
SinglyLinkedList implementation.

10.1.4 Comparisons

Clearly, stacks are easily implemented using the structures we have seen so far.
In fact, the complexities of those operations make it difficult to decide which of
the classes is better. How can we make the decision?

Let’s consider each a little more carefully. First, in terms of time, both under-
lying structures provide efficient implementations. In addition, both structures
provide (virtually) unlimited extension of the structure. Their difference stems
from a difference in approach for expanding the structure. In the case of the
vector, the structure is responsible for deciding when the structure is extended.

10.2 Queues 229

Because the structure grows by doubling, the reallocation of memory occurs in-
creasingly less often, but when that reallocation occurs, it takes an increasingly
long time. So, while the amortized cost of dynamically extending vectors is con-
stant time per element, the incremental cost of extending the vector either is
zero (if no extension actually occurs) or is occasionally proportional to the size
of the vector. Some applications may not be tolerant of this great variation in the
cost of extending the structure. In those cases the StackList implementation
should be considered.

The constant incremental overhead of expanding the StackList structure,
however, comes at a price. Since each element of the list structure requires a
reference to the list that follows, there is a potentially significant overhead in
terms of space. If the items stored in the stack are roughly the size of a reference,
the overhead is significant. If, however, the size of a reference is insignificant
when compared to the size of the elements stored, the increase in space used
may be reasonable.

10.2 Queues

Most of us have participated in queues—at movie theaters, toll booths, or ice
cream shops, or while waiting for a communal bathroom in a large family! A
queue, like a stack, is an ordered collection of elements with tightly controlled
access to the structure. Unlike a stack, however, the first item in is the first
item out. We call it a FIFO (“fie-foe”) structure. FIFO’s are useful because they
maintain the order of the data that run through them.

The primary operations of queues are to enqueue and dequeue elements.
Again, to support the Linear interface, we supply the add and remove meth-
ods as alternatives. Elements are added at the tail of the structure, where they
then pass through the structure, eventually reaching the head where they are re-
moved. The interface provides a number of other features we have seen already:

Queue

public interface Queue<E> extends Linear<E>

{

public void add(E value);

// post: the value is added to the tail of the structure

public void enqueue(E value);

// post: the value is added to the tail of the structure

public E remove();

// pre: the queue is not empty

// post: the head of the queue is removed and returned

public E dequeue();

// pre: the queue is not empty

// post: the head of the queue is removed and returned

public E getFirst();

230 Linear Structures

// pre: the queue is not empty

// post: the element at the head of the queue is returned

public E get();

// pre: the queue is not empty

// post: the element at the head of the queue is returned

public E peek();

// pre: the queue is not empty

// post: the element at the head of the queue is returned

public boolean empty();

// post: returns true if and only if the queue is empty

public int size();

// post: returns the number of elements in the queue

}

As with the Stack definition, the Queue interface describes necessary char-
acteristics of a class, but not the code to implement it. We use, instead, the
AbstractQueue class to provide any code that might be of general use in imple-
menting queues. Here, for example, we provide the various traditional aliases
for the standard operations add and remove required by the Linear interface:

AbstractQueue

public abstract class AbstractQueue<E>

extends AbstractLinear<E> implements Queue<E>

{

public void enqueue(E item)

// post: the value is added to the tail of the structure

{

add(item);

}

public E dequeue()

// pre: the queue is not empty

// post: the head of the queue is removed and returned

{

return remove();

}

public E getFirst()

// pre: the queue is not empty

// post: the element at the head of the queue is returned

{

return get();

}

public E peek()

// pre: the queue is not empty

// post: the element at the head of the queue is returned

10.2 Queues 231

{

return get();

}

}

We will use this abstract class as the basis for the various implementations of
queues that we see in this chapter.

10.2.1 Example: Solving a Coin Puzzle

As an example of an application of queues, we consider an interesting coin
puzzle (see Figure 10.4). A dime, penny, nickel, and quarter are arranged in
decreasing size in each of the leftmost four squares of a five-square board. The
object is to reverse the order of the coins and to leave them in the rightmost
four slots, in the least number of moves. In each move a single coin moves to
the left or right. Coins may be stacked, but only the top coin is allowed to move.
When a coin moves, it may not land off the board or on a smaller coin. A typical
intermediate legal position is shown in the middle of Figure 10.4. From this
point, the nickel may move right and the dime may move in either direction.

We begin by defining a “board state.” This object keeps track of the posi-
tions of each of the four coins, as well as the series of board states that lead
to this state from the start. Its implementation is an interesting problem (see
Problem 1.14). We outline its interface here:

CoinPuzzle

class State

{

public static final int DIME=0; // coins

public static final int PENNY=1;

public static final int NICKEL=2;

public static final int QUARTER=3;

public static final int LEFT = -1; // directions

public static final int RIGHT = 1;

public State()

// post: construct initial layout of coins

public State(State prior)

// pre: prior is a non-null state

// post: constructs a copy of that state to be successor state

public boolean done()

// post: returns true if state is the finish state

public boolean validMove(int coin, int direction)

// pre: State.DIME <= coin <= State.QUARTER

// direction = State.left or State.right

// post: returns true if coin can be moved in desired direction

232 Linear Structures

25

255

5

5

1

Legal

Finish

1

1

Start

4

0 1 2 3 4

0 1 2 3

10

4

10

10

0 1 2 3

Figure 10.4 A four-coin puzzle. Top and bottom orientations depict the start and finish
positions. A typical legal position is shown in the middle.

public State move(int coin, int direction)

// pre: coin and direction describe valid move

// post: coin is moved in that direction

public int printMoves()

// post: print moves up to and including this point

public int id()

// post: construct an integer representing state

// states of coins are equal iff id's are equal

}

The parameterless constructor builds a board in the initial state, while the one-
parameter constructor generates a new state to follow prior. The done method
checks for a state that is in the final position. Coins (identified by constants
such as State.PENNY) are moved in different directions (e.g., State.LEFT), but
only if the move is valid. Once the final state is found, the intermediate states
leading to a particular board position are printed with printMoves.

Once the State class has been defined, it is a fairly simple matter to solve
the puzzle:

public static void main(String args[])

{

Queue<State> pool = new QueueList<State>();

State board = new State();

10.2 Queues 233

BitSet seen = new BitSet(5*5*5*5);

pool.add(board);

while (!pool.isEmpty())

{

board = (State)pool.remove();

if (board.done()) break;

int moveCode = board.id();

if (seen.contains(moveCode)) continue;

seen.add(moveCode);

for (int coin = State.DIME; coin <= State.QUARTER; coin++)

{

if (board.validMove(coin,State.LEFT))

pool.add(board.move(coin,State.LEFT));

if (board.validMove(coin,State.RIGHT))

pool.add(board.move(coin,State.RIGHT));

}

}

board.printMoves();

}

We begin by keeping a pool of potentially unvisited board states. This queue
initially includes the single starting board position. At each stage of the loop an
unvisited board position is checked. If it is not the finish position, the boards
generated by the legal moves from the current position are added to the state
pool. Processing continues until the final position is encountered. At that point,
the intermediate positions are printed out.

Because the pool is a FIFO, each unvisited position near the head of the
queue must be at least as close to the initial position as those found near the
end. Thus, when the final position is found, the distance from the start position
(in moves) is a minimum!

A subtle point in this code is the use of the id function and the BitSet.2

The id function returns a small integer (between 0 and 55 − 1) that uniquely
identifies the state of the board. These integers are kept in the set. If, in the
future, a board position with a previously encountered state number is found,
the state can safely be ignored. Without this optimization, it becomes difficult
to avoid processing previously visited positions hundreds or thousands of times
before a solution is found. We will leave it to the reader to find the solution
either manually or automatically. (The fastest solution involves 22 moves.)

We now investigate three different implementations of queues, based on
Lists, Vectors, and arrays. Each has its merits and drawbacks, so we consider
them carefully.

2 BitSets are part of the java.util package, and we provide public implementations of these and
other sets in the structure package. They are not discussed formally within this text.

234 Linear Structures

10.2.2 List-Based Queues

Drawing upon our various analogies with real life, it is clear that there are two
points of interest in a queue: the head and the tail. This two-ended view of
queues makes the list a natural structure to support the queue. In this imple-
mentation, the head and tail of the queue correspond to the head and tail of the
list. The major difference is that a queue is restricted to peeking at and remov-
ing values from the head and appending elements to the tail. Lists, on the other
hand, allow adding and removing values from both ends.

This discussion leads us to the following protected field within the QueueList
structure:

QueueList

protected List<E> data;

When we consider the constructor, however, we are forced to consider more
carefully which implementation of a list is actually most suitable. While for the
stack the SinglyLinkedList was ideal, that implementation only provides effi-
cient manipulation of the head of the list. To get fast access to both ends of the
list, we are forced to consider either the DoublyLinkedList (see Figure 10.5)
or the CircularList. Either would be time-efficient here, but we choose the
more compact CircularList. We now consider our constructor:

public QueueList()

// post: constructs a new, empty queue

{

data = new CircularList<E>();

}

Notice that, because the List structure has unbounded size, the Queue structure
built atop it is also unbounded. This is a nice feature, since many applications
of queues have no easily estimated upper bound.

To add a value to the queue, we simply add an element to the tail of the list.
Removing a value from the list provides what we need for the remove operation.
(Note, once again, that the decision to have remove operations symmetric with
the add operations was the right decision.)

public void add(E value)

// post: the value is added to the tail of the structure

{

data.addLast(value);

}

public E remove()

// pre: the queue is not empty

// post: the head of the queue is removed and returned

{

return data.removeFirst();

}

10.2 Queues 235

The needs of the remove operation are satisfied by the removeFirst operation
on a List, so very little code needs to be written. The simplicity of these meth-
ods demonstrates how code reuse can make the implementation of structures
less difficult. This is particularly dramatic when we consider the implementa-
tion of the size-related methods of the QueueList structure:

public E get()

// pre: the queue is not empty

// post: the element at the head of the queue is returned

{

return data.getFirst();

}

public int size()

// post: returns the number of elements in the queue

{

return data.size();

}

public void clear()

// post: removes all elements from the queue

{

data.clear();

}

public boolean isEmpty()

// post: returns true iff the queue is empty

{

return data.isEmpty();

}

Because the QueueList is a rewrapping of the List structure, the complexity
of each of the methods corresponds to the complexity of the underlying List

implementation. For CircularLists, most of the operations can be performed
in constant time.

We now consider two implementations that do not use dynamically linked
structures for their underpinnings. While these structures have drawbacks, they
are useful when space is a concern or when the size of the queue can be bounded
above.

10.2.3 Vector-Based Queues

The lure of implementing structures through code reuse can lead to perfor-
mance problems if the underlying structure is not well considered. Thus, while
we have advocated hiding the unnecessary details of the implementation within
the object, it is important to have a sense of the complexity of the object’s meth-
ods, if the object is the basis for supporting larger structures.

Principle 16 Understand the complexity of the structures you use.

N

NW

SW
SE

NE

W

S

E

236 Linear Structures

tail

3

head

5

1

2

4

Figure 10.5 A Queue implemented using a List. The head of the List corresponds to
the head of the Queue.

m−10 2 3 n−1

data

1

1 2 3 mm−1

Tail of queue

First free element
Head of queue

Figure 10.6 A Queue implemented atop a Vector. As elements are added (enqueued),
the Queue expands the Vector. As elements are removed, the leftmost element is re-
moved, shrinking the Vector.

We will return to this issue a number of times. Careful design of data structures
sometimes involves careful reconsideration of the performance of structures.

Now, let’s consider an implementation of Queues using Vectors. Recall that
a Vector is a linear structure whose values can be randomly accessed and mod-
ified. We will, again, reconsider the Vector as a two-ended structure in our
attempt to implement a queue (see Figure 10.6). The head of the queue will be
found in the first location of the Vector, and the tail of the queue will be found
in the last. (The index associated with each element will, essentially, enumerate
the order in which they would be removed in the future.)

The constructor creates an empty QueueVector by creating an empty Vec-

tor. When an upper bound is provided, the second QueueVector constructor

10.2 Queues 237

passes that information along to the Vector:

QueueVector

protected Vector<E> data;

public QueueVector()

// post: constructs an empty queue

{

data = new Vector<E>();

}

public QueueVector(int size)

// post: constructs an empty queue of appropriate size

{

data = new Vector<E>(size);

}

Adding an element to the end of the queue is as simple as adding an element
to the end of the Vector. This is accomplished through the Vector method
addElement.

public void add(E value)

// post: the value is added to the tail of the structure

{

data.add(value);

}

As with the remove method of the StackVector class, remove the first ele-
ment of the Vector, and return the returned value.

public E remove()

// pre: the queue is not empty

// post: the head of the queue is removed and returned

{

return data.remove(0);

}

As usual, the remaining methods rewrap similar Vector methods in the ex-
pected way. Because of the restricted nature of this linear structure, we take
care not to publicize any features of the Vector class that violate the basic re-
strictions of a Linear interface.

When considering the complexity of these methods, it is important to keep
in mind the underlying complexities of the Vector. For example, adding a value
to the “end” of the Vector can be accomplished, on average, in constant time.3

That method, add, is so special in its simplicity that it was distinguished from
the general add(int) method: the latter operation has time complexity that
is expected to be O(n), where n is the length of the Vector. The worst-case

3 It can vary considerably if the Vector requires reallocation of memory, but the average time (as
we saw in Section 3.5) is still constant time.

238 Linear Structures

behavior, when a value is added at the front of the Vector, is O(n). All the
existing elements must be moved to the right to make room for the new value.

A similar situation occurs when we consider the removal of values from a
Vector. Unfortunately, the case we need to use—removing an element from
the beginning of a Vector—is precisely the worst case. It requires removing the
value and then shifting n − 1 elements to the left, one slot. That O(n) behavior
slows down our remove operation, probably by an unacceptable amount. For
example, the process of adding n elements to a queue and then dequeuing them
takes about O(n2) time, which may not be acceptable.

Even though the implementation seemed straightforward, we pay a signif-
icant price for this code reuse. If we could remove a value from the Vector

without having to move the other elements, the complexity of these operations
could be simplified. We consider that approach in our implementation of the
Queue interface using arrays of objects.

10.2.4 Array-Based Queues

If we can determine an upper bound for the size of the queue we need, we can
gain some efficiency because we need not worry so much about managing the
memory we use. Keyboard hardware, for example, often implements a queue
of keystrokes that are to be shipped off to the attached processor. The size of
that queue can be easily bounded above by, say, several hundred keystrokes.Fast typists,

take note! Notice, by the way, that this does not limit the number of elements that can run
through the queue, only the number of values that can be resident within the
queue simultaneously.

Once the array has been allocated, we simply place enqueued values in
successive locations within the array, starting at location 0. The head of the
queue—the location containing the oldest element—is initially found at loca-
tion 0. As elements are removed, we return the value stored at the head of the
queue, and move the head toward the right in the array. All the operations must
explicitly store and maintain the size of the queue in a counter. This counter
should be a nonnegative number less than the length of the array.

One potential problem occurs when a value is removed from the very end
of the array. Under normal circumstances, the head of the queue would move
to the right, but we now need to have it wrap around. One common solution is
to use modular arithmetic. When the head moves too far to the right, its value,
head, is no longer less than the length of the array, data.length. After moving
the head to the right (by adding 1 to head), we simply compute the remainder
when dividing by data.length. This always returns a valid index for the array,
data, and it indexes the value just to the right, in wrap-around fashion (see
Figure 10.7). It should be noted, at this point, that remainder computation is
reasonable for positive values; if head were ever to become negative, one must
take care to check to see if a negative remainder might occur. If that appears
to be a possibility, simply adding data.length to the value before remainder
computation fixes the problem in a portable way.

10.2 Queues 239

−10 1 2 3 4

1 2 34 5data

Tail of queue
First free element

Head of queue

n

Figure 10.7 A Queue implemented atop an array. As elements are added (enqueued),
the queue wraps from the back to the front of the array.

Our QueueArray implementation, then, requires three values: an array of
objects that we allocate once and never expand, the index of the head of the
queue, and the number of elements currently stored within the queue.

QueueArray

protected Object data[]; // an array of the data

protected int head; // next dequeue-able value

protected int count; // current size of queue

Given an upper bound, the constructor allocates the array and sets the head

and count variables to 0. The initial value of head could, actually, be any value
between 0 and size-1, but we use 0, for neatness. 42 isn’t the

ultimate
answer, then?public QueueArray(int size)

// post: create a queue capable of holding at most size values

{

data = new Object[size];

head = 0;

count = 0;

}

The add and remove methods appear more complex than their QueueVector
counterparts, but review of the implementation of the Vector class proves their
similarity. The add method adds a value at the logical end of the queue—the
first free slot in the array—in wrap-around fashion. That location is count slots
to the right of the head of the queue and is computed using modular arithmetic;
remove is similar, but carefully moves the head to the right. The reader should
verify that, in a valid QueueArray, the value of head will never pass the value
of tail.

public void add(E value)

// pre: the queue is not full

// post: the value is added to the tail of the structure

{

Assert.pre(!isFull(),"Queue is not full.");

240 Linear Structures

int tail = (head + count) % data.length;

data[tail] = value;

count++;

}

public E remove()

// pre: the queue is not empty

// post: the head of the queue is removed and returned

{

Assert.pre(!isEmpty(),"The queue is not empty.");

E value = (E)data[head];

head = (head + 1) % data.length;

count--;

return value;

}

The get method just provides quick access to the head entry of the array.

public E get()

// pre: the queue is not empty

// post: the element at the head of the queue is returned

{

Assert.pre(!isEmpty(),"The queue is not empty.");

return (E)data[head];

}

Because we are directly using arrays, we do not have the luxury of previously
constructed size-oriented methods, so we are forced to implement these directly.
Again, the cost of an efficient implementation can mean less code reuse—or
increased original code and the potential for error.

public int size()

// post: returns the number of elements in the queue

{

return count;

}

public void clear()

// post: removes all elements from the queue

{

// we could remove all the elements from the queue

count = 0;

head = 0;

}

public boolean isFull()

// post: returns true if the queue is at its capacity

{

return count == data.length;

}

10.2 Queues 241

public boolean isEmpty()

// post: returns true iff the queue is empty

{

return count == 0;

}

Alternative Array Implementations

One aesthetic drawback of the implementation of queues described is that sym-
metric operations—add and remove—do not lead to symmetric code. There are
several reasons for this, but we might uncover some of the details by reconsid-
ering the implementations.

Two variables, head and count, are responsible for encoding (in an asym-
metric way) the information that might be more symmetrically encoded using
two variables, say head and tail. For the sake of argument, suppose that head
points to the oldest value in the queue, while tail points to the oldest value
not in the queue—the value to the right of the last value in the queue. A simple
test to see if the queue is empty is to check to see if head == tail. Strangely
enough this also appears to be a test to see if the queue is full! Since a queue
should never be simultaneously empty and full, this problem must be addressed.

Suppose the array has length l. Then both head and tail have a range of
0 to l − 1. They take on l values apiece. Now consider all queues with head

values stored beginning at location 0. The head is fixed at 0, but tail may take
on any of the l values between 0 and l − 1, inclusive. The queues represented,
however, have l + 1 potential states: an empty queue, a queue with one value,
a queue with two values, up to a queue with l values. Because there are l + 1
queues, they cannot be adequately represented by a pair of variables that can
support only l different states. There are several solutions to this conflict that
we outline momentarily and discuss in problems at the end of the chapter.

1. A boolean variable, queueEmpty, could be added to distinguish between
the two states where head and tail are identical. Code written using this
technique is clean and symmetric. The disadvantage of this technique is
that more code must be written to maintain the extra variable.

2. An array element logically to the left of the head of the queue can be
reserved. The queue is full if there are l − 1 values within the queue.
Since it would not be possible to add a value when the queue is full, the
tail and head variables would never “become equal” through expansion.
The only significant difference is the allocation of an extra reserved cell,
and a change in the isFull method to see if the tail is just to the logical
left of the head. The disadvantage of this technique is that it requires the
allocation of another array element. When objects are large, this cost may
be prohibitively expensive. (Again, in Java, an Object is a small reference
to the actual memory used, so the cost is fairly insignificant. In other

242 Linear Structures

languages, where instances are stored directly, and not as references, this
cost may be prohibitively expensive.)

Our actual implementation, of course, provides a third solution to the prob-
lem. While we like our solution, data abstraction allows us to hide any changes
we might make if we change our minds.

10.3 Example: Solving Mazes

To demonstrate the utility of stacks and queues, we consider the automated
solution of a maze. A maze is simply a matrix of cells that are adjacent to one
another. The user begins in a special start cell and seeks a path of adjacent cells
that lead to the finish cell.

One general approach to solving a maze (or any other search problem) is
to consider unvisited cells as potential tasks. Each unvisited cell represents the
task of finding a path from that cell to the finish. Some cells, of course, may not
be reachable from the start position, so they are tasks we seek to avoid. Other
cells lead us on trails from the start to finish. Viewed in this manner, we can use
the linear structure to help us solve the problem by keeping track of outstanding
tasks—unvisited cells adjacent to visited cells.

In the following program, we make use of two abstract classes, Position
and Maze. A Position is used to identify a unique location within a maze. Any
Position can be transformed into another Position by asking it for an adjacent
position to the north, south, east, or west. Here is the class:

MazeRunner

class Position

{

public Position north()

// post: returns position above

public Position south()

// post: returns position below

public Position east()

// post: returns position to right

public Position west()

// post: returns position to left

public boolean equals(Object other)

// post: returns true iff objects represent same position

}

The interface for the Maze class reads a maze description from a file and gen-
erates the appropriate adjacency of cells. We ignore the implementation that is
not important to us at this point (it is available online):

10.3 Example: Solving Mazes 243

class Maze

{

public Maze(String filename)

// pre: filename is the name of a maze file. # is a wall.

// 's' marks the start, 'f' marks the finish.

// post: reads and constructs maze from file <filename>

public void visit(Position p)

// pre: p is a position within the maze

// post: cell at position p is set to visited

public boolean isVisited(Position p)

// pre: p is a position within the maze

// pos: returns true if the position has been visited

public Position start()

// post: returns start position

public Position finish()

// post: returns finish position

public boolean isClear(Position p)

// post: returns true iff p is a clear location within the maze

}

Now, once we have the structures supporting the construction of mazes, we can
use a Linear structure to organize the search for a solution in a Maze:

public static void main(String[] arguments)

{

Maze m = new Maze(arguments[0]); // the maze

Position goal = m.finish(); // where the finish is

Position square = null; // the current position

// a linear structure to manage search

Linear<Position> todo = new StackList<Position>();

// begin by priming the queue(stack) w/starting position

todo.add(m.start());

while (!todo.isEmpty()) // while we haven't finished exploring

{

// take the top position from the stack and check for finish

square = todo.remove();

if (m.isVisited(square)) continue; // been here before

if (square.equals(goal)) {

System.out.println(m); // print solution

break;

}

// not finished.

// visit this location, and add neighbors to pool

m.visit(square);

244 Linear Structures

#################### ####################

#s# #f # # #s# #f...#...#

#.####### ####.#.#.#

#.........#..#.###.#

###.#........#

#...#######.##

#.### #...#..#

#.#...#.#.##.#

#...#...#....#

#################### ####################

Figure 10.8 A classic maze and its solution found using a stack. Dots indicate locations
in the maze visited during the solution process.

if (m.isClear(square.north())) todo.add(square.north());

if (m.isClear(square.west())) todo.add(square.west());

if (m.isClear(square.south())) todo.add(square.south());

if (m.isClear(square.east())) todo.add(square.east());

}

}

We begin by placing the start position on the stack. If, ultimately, the stack is
emptied, a solution is impossible. If the stack is not empty, the top position is
removed and considered, if not visited. If an unvisited cell is not the finish, the
cell is marked visited, and open neighboring cells are added to the stack.

Notice that since the underlying data structure is a Stack, the order in which
the neighboring positions are pushed on the stack is the reverse of the order in
which they will be considered. The result is that the program prefers to head
east before any other direction. This can be seen as it gets distracted by going
east at the right border of the maze of Figure 10.8. Because stacks are LIFONo:

Go west
young Maze!

structures, the search for a solution prefers to deepen the search rather than
investigate alternatives. If a queue was used as the linear structure, the search
would expand along a frontier of cells that are equidistant from the start. The
solution found, then, would be the most direct route from start to finish, just as
in the coin puzzle.

10.4 Conclusions

In this chapter we have investigated two important linear structures: the Stack

and the Queue. Each implements add and remove operations. Traditional im-
plementations of Stacks refer to these operations as push and pop, while tradi-
tional Queue methods are called enqueue and dequeue. Since these structures
are often used to solve similar problems (e.g., search problems), they share a
common Linear interface.

10.4 Conclusions 245

There are many different ways to implement each of these linear structures,
and we have investigated a number—including implementations using arrays.
Because of the trade-offs between speed and versatility, each implementation
has its own particular strengths. Still, for many applications where performance
is less important, we can select an implementation and use it without great
concern because a common interface allows us to freely swap implementations.

We have seen a number of examples that use Linear structures to solve com-
plex problems. Since stacks are used to maintain the state of executing methods,
we have seen that recursive programs can be converted to iterative programs
that maintain an explicit stack. Two explicit search problems—the coin puzzle
and the maze—have an obvious relation. Because the coin puzzle searches for a
short solution, we use a queue to maintain the pool of goal candidates. For the
maze, we chose a stack, but a queue is often just as effective. The coin puzzle
can be thought of as a maze whose rules determine the location of the barriers
between board positions.

Self Check Problems

Solutions to these problems begin on page 447.

10.1 Is a Stack a Linear? Is it a List? An AbstractLinear? A Queue?

10.2 Is a Stack a List? Is a StackList a List? Is a StackList a Stack?

10.3 Why might we use generic Queues in our code, instead of QueueLists?

10.4 Is it possible to construct a new Queue directly?

10.5 If you are in a line to wash your car, are you in a queue or a stack?

10.6 Suppose you surf to a page on the Web about gardening. From there,
you surf to a page about flowers. From there, you surf to a flower seed distribu-
tor. When you push the “go back” button, you return to the flower page. What
structure is your history stored in?

10.7 In a breadth-first search, what is special about the first solution found?

10.8 You are in a garden maze and you are optimistically racing to the center.
Are you more likely to use a stack-based depth-first search, or a queue-based
breadth-first search?

10.9 Why do we use modular arithmetic in the QueueArray implementation?

Problems

Solutions to the odd-numbered problems begin on page 474.

10.1 Suppose we push each of the integers 1, 2, . . . , n, in order, on a stack,
and then perform m ≤ n pop operations. What is the final state of the stack?

10.2 Suppose we enqueue each of the integers 1, 2, . . . , n, in order, into a
queue, and then perform m ≤ n dequeue operations. What is the final state of
the queue?

246 Linear Structures

10.3 Suppose you wish to fill a stack with a copy of another, maintaining the
order of elements. Using only Stack operations, describe how this would be
done. How many additional stacks are necessary?
10.4 Suppose you wish to reverse the order of elements of a stack. Using
only Stack operations, describe how this would be done. Assuming you place
the result in the original stack, how many additional stacks are necessary?
10.5 Suppose you wish to copy a queue into another, preserving the order of
elements. Using only Queue operations, describe how this would be done.
10.6 In the discussion of radix sort (see Section 6.6) bucketPass sorted in-
teger values based on a digit of the number. It was important that the sort was
stable—that values with similar digits remained in their original relative or-
der. Unfortunately, our implementation used Vectors, and to have bucketPass

work in O(n) time, it was important to add and remove values from the end of
the Vector. It was also necessary to unload the buckets in reverse order. Is it
possible to clean this code up using a Stack or a Queue? One of these two will
allow us to unload the buckets into the data array in increasing order. Does this
improved version run as quickly (in terms of big-O)?
10.7 Suppose you wish to reverse the order of elements of a queue. Using
only Queue operations, describe how this would be done. (Hint: While you can’t
use a stack, you can use something similar.)
10.8 Over time, the elements 1, 2, and 3 are pushed onto the stack, among
others, in that order. What sequence(s) of popping the elements 1, 2 and 3 off
the stack are not possible?
10.9 Generalize the solution to Problem 10.8. If elements 1, 2, 3, . . . , n are
pushed onto a stack in that order, what sequences of popping the elements off
the stack are not permissible?
10.10 Over time, the elements 1, 2, and 3 are added to a queue, in that order.
What sequence(s) of removing the elements from the queue is impossible?
10.11 Generalize the solution to Problem 10.10. If elements 1, 2, 3, . . . , n are
added to a queue in that order, what sequences of removing the elements are
not permissible?
10.12 It is conceivable that one linear structure is more general than another.
(a) Is it possible to implement a Queue using a Stack? What is the complexity
of each of the Queue operations? (b) Is it possible to implement a Stack using
a Queue? What are the complexities of the various Stack methods?
10.13 Describe how we might efficiently implement a Queue as a pair of
Stacks, called a “stack pair.” (Hint: Think of one of the stacks as the head
of the queue and the other as the tail.)
10.14 The implementation of QueueLists makes use of a CircularList. Im-
plement QueueLists in a manner that is efficient in time and space using Node

with a head and tail reference.
10.15 Burger Death needs to keep track of orders placed at the drive-up win-
dow. Design a data structure to support their ordering system.

10.5 Laboratory: A Stack-Based Language

Objective. To implement a PostScript-based calculator.

Discussion. In this lab we will investigate a small portion of a stack-based lan-
guage called PostScript. You will probably recognize that PostScript is a file
format often used with printers. In fact, the file you send to your printer is a
program that instructs your printer to draw the appropriate output. PostScript
is stack-based: integral to the language is an operand stack. Each operation
that is executed pops its operands from the stack and pushes on a result. There
are other notable examples of stack-based languages, including forth, a lan-
guage commonly used by astronomers to program telescopes. If you have an
older Hewlett-Packard calculator, it likely uses a stack-based input mechanism
to perform calculations.

We will implement a few of the math operators available in PostScript.
To see how PostScript works, you can run a PostScript simulator. (A good

simulator for PostScript is the freely available ghostscript utility. It is available
from www.gnu.org.) If you have a simulator handy, you might try the following
example inputs. (To exit a PostScript simulator, type quit.)

1. The following program computes 1 + 1:

1 1 add pstack

Every item you type in is a token. Tokens include numbers, booleans,
or symbols. Here, we’ve typed in two numeric tokens, followed by two
symbolic tokens. Each number is pushed on the internal stack of operands.
When the add token is encountered, it causes PostScript to pop off two
values and add them together. The result is pushed back on the stack.
(Other mathematical operations include sub, mul, and div.) The pstack

command causes the entire stack to be printed to the console.

2. Provided the stack contains at least one value, the pop operator can be
used to remove it. Thus, the following computes 2 and prints nothing:

1 1 add pop pstack

3. The following “program” computes 1 + 3 ∗ 4:

1 3 4 mul add pstack

The result computed here, 13, is different than what is computed by the
following program:

1 3 add 4 mul pstack

In the latter case the addition is performed first, computing 16.

248 Linear Structures

4. Some operations simply move values about. You can duplicate values—
the following squares the number 10.1:

10.1 dup mul pstack pop

The exch operator to exchange two values, computing 1 − 3:

3 1 exch sub pstack pop

5. Comparison operations compute logical values:

1 2 eq pstack pop

tests for equality of 1 and 2, and leaves false on the stack. The program

1 1 eq pstack pop

yields a value of true.

6. Symbols are defined using the def operation. To define a symbolic value
we specify a “quoted” symbol (preceded by a slash) and the value, all
followed by the operator def:

/pi 3.141592653 def

Once we define a symbol, we can use it in computations:

/radius 1.6 def

pi radius dup mul mul pstack pop

computes and prints the area of a circle with radius 1.6. After the pop, the
stack is empty.

Procedure. Write a program that simulates the behavior of this small subset of
PostScript. To help you accomplish this, we’ve created three classes that you
will find useful:

• Token. An immutable (constant) object that contains a double, boolean,

Token

or symbol. Different constructors allow you to construct different Token
values. The class also provides methods to determine the type and value
of a token.

• Reader. A class that allows you to read Tokens from an input stream. The

Reader

typical use of a reader is as follows:

Reader r = new Reader();

Token t;

while (r.hasNext())

{

t = (Token)r.next();

if (t.isSymbol() && // only if symbol:

t.getSymbol().equals("quit")) break;

// process token

}

10.5 Laboratory: A Stack-Based Language 249

This is actually our first use of an Iterator. It always returns an Object

of type Token.

• SymbolTable. An object that allows you to keep track of String–Token

SymbolTable

associations. Here is an example of how to save and recall the value of π:

SymbolTable table = new SymbolTable();

// sometime later:

table.add("pi",new Token(3.141592653));

// sometime even later:

if (table.contains("pi"))

{

Token token = table.get("pi");

System.out.println(token.getNumber());

}

You should familiarize yourself with these classes before you launch into writing
your interpreter.

To complete your project, you should implement the PostScript commands
pstack, add, sub, mul, div, dup, exch, eq, ne, def, pop, quit. Also implement
the nonstandard PostScript command ptable that prints the symbol table.
Thought Questions. Consider the following questions as you complete the lab:

1. If we are performing an eq operation, is it necessary to assume that the
values on the top of the stack are, say, numbers?

2. The pstack operation should print the contents of the operand stack with-
out destroying it. What is the most elegant way of doing this? (There are
many choices.)

3. PostScript also has a notion of a procedure. A procedure is a series of
Tokens surrounded by braces (e.g., { 2 add }). The Token class reads
procedures and stores the procedure’s Tokens in a List. The Reader
class has a constructor that takes a List as a parameter and returns a
Reader that iteratively returns Tokens from its list. Can you augment your
PostScript interpreter to handle the definition of functions like area, be-
low?

/pi 3.141592653 def

/area { dup mul pi mul } def

1.6 area

9 area pstack

quit

Such a PostScript program defines a new procedure called area that com-
putes πr2 where r is the value found on the top of the stack when the
procedure is called. The result of running this code would be

254.469004893

8.042477191680002

250 Linear Structures

4. How might you implement the if operator? The if operator takes a
boolean and a token (usually a procedure) and executes the token if the
boolean is true. This would allow the definition of the absolute value
function (given a less than operator, lt):

/abs { dup 0 lt { -1 mul } if } def

3 abs

-3 abs

eq pstack

The result is true.

5. What does the following do?

/count { dup 1 ne { dup 1 sub count } if } def

10 count pstack

Notes:

10.6 Laboratory: The Web Crawler

Objective. To crawl over web pages in a breadth-first manner.
Discussion. Web crawling devices are a fact of life. These programs automati-
cally venture out on the Web and internalize documents. Their actions are based
on the links between pages. The data structures involved in keeping track of the
progress of an avid web crawler are quite complex: imagine, for example, how
difficult it must be for such a device to keep from chasing loops of references
between pages.

In this lab we will build a web crawler that determines the distance from
one page to another. If page A references page B, the distance from A to B is
1. Notice that page B may not have any links on it, so the distance from B to A
may not be defined.

Here is an approach to determining the distance from page A to arbitrary
page B:

• Start a list of pages to consider. This list has two columns: the page, and
its distance from A. We can, for example, put page A on this list, and
assign it a distance of zero. If we ever see page B on this list, the problem
is solved: just print out the distance associated with B.

• Remove the first page on our list: call it page X with distance d from page
A. If X has the same URL as B, B must be distance d from A. Otherwise,
consider any link off of page X: either it points to a page we’ve already
seen on our list (it has a distance d or less), or it is a new page. If it’s
a new page we haven’t encountered, add it to the end of our list and
associate with it a distance d + 1—it’s a link farther from A than page X.
We consider all the links off of page X before considering a new page from
our list.

If the list is a FIFO, this process is a breadth-first traversal, and the distance
associated with B is the shortest distance possible. We can essentially think of
the Web as a large maze that we’re exploring.
Procedure. Necessary for this lab is a class HTML. It defines a reference to a

HTML

textual (HTML) web page. The constructor takes a URL that identifies which
page you’re interested in:

HTML page = new HTML("http://www.yahoo.com");

Only pages that appear to have valid HTML code can actually be inspected
(other types of pages will appear empty). Once the reference is made to the
page, you can get its content with the method content:

System.out.println(page.content());

Two methods allow you to get the URL’s associated with each link on a page:
hasNext and nextURL. The hasNext method returns true if there are more links
you have not yet considered. The nextURL method returns a URL (a String)
that is pointed to by this page. Here’s a typical loop that prints all the links
associated with a page:

252 Linear Structures

int i = 0;

while (page.hasNext())

{

System.out.println(i+": "+page.nextURL());

i++;

}

For the sake of speed, the HTML method downloads 10K of information. For
simple pages, this covers at least the first visible page on the screen, and it might
be argued that the most important links to other pages probably appear within
this short start (many crawlers, for example, limit their investigations to the
first part of a document). You can change the size of the document considered
in the constructor:

HTML page = new HTML("http://www.yahoo.com",20*1024);

You should probably keep this within a reasonable range, to limit the total im-
pact on memory.

Write a program that will tell us the maximum number of links (found on
the first page of a document) that are necessary to get from your home page to
any other page within your personal web. You can identify these pages because
they all begin with the same prefix. We might think of this as a crude estimate
of the “depth” or “diameter” of a site.

Thought Questions. Consider the following questions as you complete the lab:

1. How do your results change when you change the buffer size for the page
to 2K? 50K? Under what conditions would a large buffer change cause the
diameter of a Web to decrease? Under what conditions would this change
cause the diameter of a Web to increase?

Notes:

